
Computational Engineering Sciences (CES)

Exploiting Graphics Accelerators
for Computational Biology

Diploma Thesis

Author:
Lucas Beyer

Supervisor:
Prof. Paolo Bientinesi

July 23, 2012

2

Contents

1 Acknowledgements 5

2 Introduction 7
2.1 Introduction to genetics . 7
2.2 Genome-Wide Association Studies 9
2.3 The mathematics of GWAS . 12

2.3.1 The amount of data involved 13
2.4 Related work . 14
2.5 Fundamental HPC libraries and algorithms 14

2.5.1 Basic Linear Algebra Subprograms (BLAS) 14
2.5.2 Linear Algebra Package (LAPACK) 15

2.6 Goals of the thesis . 16

3 State of the art 17
3.1 The HP-GWAS algorithm . 17
3.2 Handling huge datasets . 19
3.3 Performance . 20

4 Graphics Processing Units (GPUs) 23
4.1 History of GPUs . 23
4.2 The architecture of a modern GPU 26
4.3 Libraries for GPU computing . 26

5 Leveraging GPUs for GWAS 29
5.1 Determining the current bottleneck 29

5.1.1 Results . 30
5.2 Hiding the memory transfers and CPU computation 31

5.2.1 Two-layered double- and triple-buffering 32
5.2.2 Results . 35

5.3 Using more than one GPU . 37
5.3.1 Results and scalability . 37

3

4 CONTENTS

6 Realtime Visualization 41
6.1 The hardware infrastructure . 41
6.2 The software ecosystem . 42

6.2.1 The communication model 42
6.2.2 The three applications . 44
6.2.3 Changes to the transformation matrices 44

7 Conclusions 49

Bibliography 50

List of figures 52

List of listings 54

List of tables 55

Chapter 1

Acknowledgements

First of all, I would like to thank prof. Paolo Bientinesi for giving me the opportu-
nity to work on an interesting problem involving GPUs, biology, high-performance
and visualization. I also thank him for the trust he put in me by giving me the
chance to present my work at an international conference at such an early stage
of my academic education. Not only did I have a lot of fun, but I also learned
quite a bit.

Next, I am thankful to Diego Fabregat-Traver for permanently letting me bug
him with all my questions, for his openness and for all the work he has already
done on this project. I also want to thank the rest of the AICES-HPAC group
for the interesting discussions and especially for all the helpful feedback on my
mock-talk. The access to the GPU cluster at Universitat Jaume I in Spain which
I have been granted by Enrique S. Quintana-Ortì, as well as his comments have
been very helpful.

Finally, I am grateful to my girlfriend Supinya for her great amount of patience
and support (and food :p) as well as to my parents for all the support they gave
me and to my brother for all the played games to relax me.

5

6 CHAPTER 1. ACKNOWLEDGEMENTS

Chapter 2

Introduction

In this chapter we first give a succint introduction to genetics, explaining what
Genome-Wide Association Studies (GWAS) are and then we describe the math-
ematical formulation and the computational aspects of GWAS. We conclude by
presenting the objectives of this thesis along with an overview of related works.

In short, the goal of a GWAS is to find an association between genetic variants and
a specific trait such as a disease. Because there is a tremendous amount of such
genetic variants, the computations involved in GWAS take a long time, ranging
from days to weeks or even months. In this thesis, we take the currently fastest
available implementation and further speed it up by exploiting the computate
offered by modern graphics accelerators, thus reducing the computation time to
only hours.

2.1 Introduction to genetics

Cells are the building blocks of life; humans are made out of about 10 trillion
(1013) cells. A single cell is a microscopic (1–100µm1) living organism which
can grow, reproduce and synthesize proteins. In a human, many different types
of proteins coexist. Each type is specialized in one function –like copying a
cell, repairing damage, supporting muscle contraction, breaking down proteins
contained in food– and can only carry out that specific function. Thus, the
overall functionality of a cell is determined by the kind of proteins it produces,
which, in turn is dictated by a part of the cell’s DNA2.

1A micrometre µm corresponds to a thousandth of a millimetre mm
2The remaining part of the DNA is called noncoding DNA; colloquially, this is referred to

as junk DNA, because it has no or unknown functionality.

7

8 CHAPTER 2. INTRODUCTION

The segments of the DNA which contain information about protein synthesis
are called genes. They encode so-called traits, which are features of physical
appearance of the organism –like eye or hair color– as internal features of the
organism –like blood type or resistances to diseases–. The fact that children look
similar to their parents is due to the genes they inherit. During this process
of inheritance, the parents’ genes are copied and combined, but some of them
incur random modifications, known as mutations. Mutations are the reason for
differences between children and their parents, including undesirable ones such as
diseases [22]. The analysis of these differences in the genes helps understanding,
identifying and sometimes even preventing or curing such diseases.

The hereditary information of a species consists of all the genes in the DNA, and is
called genome. (Exceptions are viruses, for many of which the genome is encoded
in the RNA. [20]) To help us grasp the magnitude of the human genome, we can
use an analogy with instructions written in a book: the genome is the book, which
contains 23 chapters (the chromosomes); each chapter contains between 48 and
250 million letters out of an alphabet consisting of only the nucleotides A, C, G
and T, and does not contain spaces; this whole book fits inside a cell nucleus of an
average size of 6 µm and is present in almost every single cell out of the 10 trillion
cells in the human body. A gene is a functional group of nucleotides. Determining
the order of the nucleotides (letters) in a genome of a species (book) is a procedure
called sequencing the genome of that species; the result is a genome sequence. The
human genome project has successfully sequenced the human genome in 2004 [6],
which makes it now possible to conduct genome-wide association studies.

Even though the genome sequence of every individual is different, the biggest
part of it (99.9% for humans) stays the same within one species. When a single
nucleotide of the DNA differs between two individuals of the same species, this dif-
ference is called a single-nucleotide polymorphism (SNP, pronounced "snip"). As
an example, if a fragment of the DNA of one individual was the gene AAGCCTA
while the gene was AAGCTTA for another individual, there would be a SNP
and the two alleles3 would be C and T. SNPs are of particular interest because if
most people with a specific trait (e.g. being red-haired) all have the same alleles
for some SNPs (while most people who don’t have this trait have other alleles for
these SNPs), it is very likely that these SNPs play a role for said trait.

3An allele is one of two or more possible forms that a nucleotide (or gene, or group of genes)
can have. When a nucleotide can either be A or G, those are the alleles; when a gene can either
be ACTA or ATCA, those are the alleles.

2.2. GENOME-WIDE ASSOCIATION STUDIES 9

2.2 Genome-Wide Association Studies

The predisposition and the way an individual develops and responds to a disease
or a specific treatment is often affected by some SNPs or combinations thereof.
This is why the study of SNPs and their correlation with traits is very impor-
tant [5].

Genome-wide association studies compare the DNA of two groups of individuals.
All the individuals in the case group have a same trait, for example a specific
disease, while all the individuals in the control group don’t have this trait. The
SNPs of the individuals in these groups are compared, if one allele (variant) of
a SNP is more frequent in the case group than in the control group, the SNP is
said to be associated with the trait (disease). In contrast with other methods for
linking traits to SNPs, such as inheritance studies or genetic association studies,
GWAS consider the whole genome [14].

year # of GWAS
2005
2006
2007
2008
2009
2010
2011

2
13

453
999

1257
2304
2333

0

750

1500

2250

3000

20
05

20
06

20
07

20
08

20
09

20
10

20
11

23332304

1257
999

453

132

of GWAS carried out each year

Figure 2.1: Amount of genome-wide association studies published each year.

Using the catalog of all published GWAS [12] recently compiled by the NIH’s
Office of Population Genomics, we gathered some statistics about GWAS. Fig 2.1
shows that the amount of published GWAS has increased tremendously in recent
years, ending with more than six new studies per day in the last two years.

It is also interesting to look at how the scope of these studies has evolved over the
past years. The evolution of the number of SNPs investigated in the studies is
summarized in Fig. 2.2. The left panel (part a) shows the median4 SNP-count of

4When all datapoints are ordered, the one in the middle is the median. The median has a
similar interpretation as the average although it is less sensitive to outliers. The median can
also be called the 50-percentile.

10 CHAPTER 2. INTRODUCTION

0M

1M

2M

3M

4M

2005 2006 2007 2008 2009 2010 2011

a) #SNPs passing QC

0M

3M

6M

9M

12M

2005 2006 2007 2008 2009 2010 2011

0,2M

2,4M
1,5M

2,6M 2,7M

7,5M

10,5M

b) Largest #SNPs passing QC

Figure 2.2: a) The median, first and second quartile and b) the largest SNP-count
used for the studies each year.

each year’s studies along with error-bars for the first and second quartiles5. The
right panel (part b) displays the study with the largest SNP-count of each year.
One can observe that while GWA studies started out relatively small, since 2009
the amount of analyzed SNPs is growing tremendously. Preliminary data for 2012
suggests that this trend keeps going with the largest study having analyzed about
16 million SNPs [11], which is 1.5 times the biggest one in any of the previous
years. This data, as well as discussions with biologists, suggest that there is a
need for algorithms and software that can compute a GWAS with even more
SNPs, and faster than currently possible.

year

Smallest
Initial

Sample
Size

Smallest
Replication
Sample Size

Smallest
SNPs passing

QC

Biggest Initial
Sample Size

Biggest
Replication
Sample Size

Biggest SNPs
passing QC

Average
Initial Sample

Size

Average
Replication
Sample Size

Average
SNPs passing

QC

2005
2006
2007
2008
2009
2010
2011

146 664 103611 443 664 198345 294,5 664,0 150978,0
200 680 86604 1929 10242 2400000 913,46153846 4607,8333333 618624,92308
100 26 60275 15970 265356 1502205 2092,4856512 7679,5797101 244803,51435
60 104 3884 80969 79792 2600000 9560,9429429 12761,517888 673192,54637
76 40 62775 40518 113236 2661766 7985,7788385 12059,538044 961917,74726
8 16 83381 133653 125931 7456344 24489,565104 24901,258356 1341454,0065

52 31 57500 86995 133361 10471986 14992,637805 20024,432867 1469813,7462

0K

10K

20K

30K

40K

2005 2006 2007 2008 2009 2010 2011

a) Replication sample size

0K

75K

150K

225K

300K

2005 2006 2007 2008 2009 2010 2011

0,7K 10,2K

265,4K

79,8K
113,2K 125,9K 133,4K

b) Largest replication sample size

Figure 2.3: a) The median, first and second quartile and b) the largest sample
size used for the replication of the studies each year.

5The first and second quartile are also called 25-percentile and 75-percentile respectively.
They are defined analogously to the median, only that the 25%th and the 75%th ordered
datapoint is picked instead of the 50%th. They give a feeling of the spread of the data when
coupled with the median, similarly to the use of the standard deviation coupled with the
average. This means that 50% of the datapoints lie within the black error-bars.

2.2. GENOME-WIDE ASSOCIATION STUDIES 11

Besides the number of SNPs, another parameter relevant to the implementation of
an algorithm is the sample size. The sample size is the total number of individuals
of both the case and the control group. Almost always, a study is replicated
(repeated) a second time in order to increase the confidence in the results. In
almost all of the published GWAS, the sample size used during the replication is
larger than the sample size of the initial study. This is why we will look at the
replication sample size unless we specify otherwise. What can be seen in Fig. 2.3.a
is that while it has grown at first, in the past four years the median sample size
seems to have settled around 10 000 individuals. The biggest general growth
happened between 2007 and 2008, and since then the sample size is growing
slowly. Even looking at the biggest sample size of each year (Fig 2.3.b), it is clear
that besides one outlier in 20076, the growth of the sample size is negligible when
compared to the growth of the SNP count. This is supported by the fact that
a sample size of ten thousand individuals is usally more than enough to achieve
statistically significant results.

Date Initial Sample SizeReplication Sample SizeSNPs passing QCLink
3 mai 2012 1850 2009 533252 http://www.ncbi.nlm.nih.gov/pubmed/22551897
3 mai 2012 6685 5725 130903 http://www.ncbi.nlm.nih.gov/pubmed/22570697
3 mai 2012 11972 7482 2500000 http://www.ncbi.nlm.nih.gov/pubmed/22570627
3 mai 2012 11972 7482 2500000 http://www.ncbi.nlm.nih.gov/pubmed/22570627
2 mai 2012 573 931 512296 http://www.ncbi.nlm.nih.gov/pubmed/22560479
2 mai 2012 573 931 512296 http://www.ncbi.nlm.nih.gov/pubmed/22560479
2 mai 2012 573 931 512296 http://www.ncbi.nlm.nih.gov/pubmed/22560479
2 mai 2012 573 931 512296 http://www.ncbi.nlm.nih.gov/pubmed/22560479
2 mai 2012 573 931 512296 http://www.ncbi.nlm.nih.gov/pubmed/22560479

28 avr. 2012 5767 344 681552 http://www.ncbi.nlm.nih.gov/pubmed/22605921
27 avr. 2012 905 2152 569615 http://www.ncbi.nlm.nih.gov/pubmed/22558097
27 avr. 2012 9103 1629 2178644 http://www.ncbi.nlm.nih.gov/pubmed/22558069
27 avr. 2012 9103 1629 2178644 http://www.ncbi.nlm.nih.gov/pubmed/22558069
27 avr. 2012 9103 1629 2178644 http://www.ncbi.nlm.nih.gov/pubmed/22558069
27 avr. 2012 9103 1629 2178644 http://www.ncbi.nlm.nih.gov/pubmed/22558069
27 avr. 2012 9103 1629 2178644 http://www.ncbi.nlm.nih.gov/pubmed/22558069
26 avr. 2012 418 407 444088 http://www.ncbi.nlm.nih.gov/pubmed/22538805
26 avr. 2012 2665 4137 912924 http://www.ncbi.nlm.nih.gov/pubmed/22541561
24 avr. 2012 3365 835 948658 http://www.ncbi.nlm.nih.gov/pubmed/22524403
16 avr. 2012 3736 3727 2524918 http://www.ncbi.nlm.nih.gov/pubmed/22494929
16 avr. 2012 3736 3727 2524918 http://www.ncbi.nlm.nih.gov/pubmed/22494929
16 avr. 2012 3736 3727 2524918 http://www.ncbi.nlm.nih.gov/pubmed/22494929
16 avr. 2012 3736 3727 2524918 http://www.ncbi.nlm.nih.gov/pubmed/22494929
15 avr. 2012 9232 2318 2500000 http://www.ncbi.nlm.nih.gov/pubmed/22504421
15 avr. 2012 9232 2318 2500000 http://www.ncbi.nlm.nih.gov/pubmed/22504421
15 avr. 2012 9232 2318 2500000 http://www.ncbi.nlm.nih.gov/pubmed/22504421
15 avr. 2012 9232 2318 2500000 http://www.ncbi.nlm.nih.gov/pubmed/22504421
15 avr. 2012 9232 2318 2500000 http://www.ncbi.nlm.nih.gov/pubmed/22504421
15 avr. 2012 8175 1752 2229753 http://www.ncbi.nlm.nih.gov/pubmed/22504418
15 avr. 2012 8175 1752 2229753 http://www.ncbi.nlm.nih.gov/pubmed/22504418
15 avr. 2012 10768 8321 2400000 http://www.ncbi.nlm.nih.gov/pubmed/22504419
15 avr. 2012 10768 8321 2400000 http://www.ncbi.nlm.nih.gov/pubmed/22504419

0M

3M

6M

9M

12M

0K 75K 150K 225K 300K

GWAS dimensions

SN
Ps

 p
as

si
ng

 Q
C

Replication sample size

2006
2007
2008
2009
2010
2011

0M

4M

8M

12M

16M
GWAS dimensions

SN
Ps

 p
as

si
ng

 Q
C

Figure 2.4: Every published GWAS’s SNP and sample count.

Our intuition was that the studies analyzing a very large amount of SNPs are
likely to have a small sample size and vice-versa. We have investigated this in
Fig. 2.4, where every single published GWAS represents one datapoint whose
horizontal and vertical coordinates are determined by its sample size and SNP
count respectively. It is immediately noticeable that the whole upper right area
is empty; this means there has never been a GWAS with both a big sample size

6The second largest sample size for that year is 51 535 individuals, which fits the curve on
the graph nicely.

12 CHAPTER 2. INTRODUCTION

and SNP count, confirming our intuition.

2.3 The mathematics of GWAS

n

n

p

Xi

XiTXiT

M-1 M-1 yy

rri

Figure 2.5: The dimensions of a single instance of Eq. (2.1).

Let n and m be the sample size and the number of SNPs considered, respectively.
The GWAS can be expressed as a variance component model [9] whose solution
ri can be formulated as

ri = (XT
i M

−1Xi)
−1XT

i M
−1y, i = 1..m. (2.1)

This equation is used to compute in ri the relations between variations in the
phenotype7 y and variations in the genotype encoded in Xi. Fig. 2.5 captures the
dimensions of the objects involved in one such equation. The height of the matri-
ces Xi and M and of the vector y corresponds to the number of samples n, thus
each line in the design-matrix Xi ∈ Rn×p corresponds to an individual’s genetic
makeup (i.e. information about one SNP), and each entry in y ∈ Rn corresponds
to an individual’s phenotype8. M ∈ Rn×n models the relations amongst the in-
dividuals, e.g. two individuals being in the same family. Finally, an important
feature of the matrices Xi is that they are partitioned as (XL|XRi

) where XL

contains fixed covariates such as age and sex and thus stays the same for any i,
while XRi

is a single column vector containing the genotypes of the ith SNP.

Even though Eq. (2.1) has to be computed for every single SNP, only the design-
matrix Xi changes while M and y stay the same. Fig 2.6 reflects this fact by
showing the variables proportionally sized for ten thousand individuals (n =
10 000) and half a million SNPs (m = 500 000), a problem which, as discussed in
the previous section, can still be considered small.

7A phenotype is the observed value of a certain trait of an individual. For example, if the
studied trait was the hair color, the phenotype of an individual would be the one of “blonde”,
“brown”, “black” or “red”.

8In the example of the body height as a trait, the entries of y would then be the heights of
the individuals.

2.3. THE MATHEMATICS OF GWAS 13

Figure 2.6: A proportionally correct depiction of the full Eq. (2.1) for n = 10 000
and m = 500 000.

2.3.1 The amount of data involved

At this point, we can already analyze the storage size requirements due to the
data involved in GWAS. Biologists told us that a typical value for p is 20 and
that m = 10 000 is considered a big study. Our analysis in Section 2.2 supports
this fact. We also know that, ideally, biologists would like to use all known SNPs
in a study. As of June 2012, the SNP database dbSNP lists 187 852 828 known
SNPs for humans [4], so we will consider m = 190 000 000. With these numbers,
assuming that all data is stored as C’s double type9, we obtain the storage sizes
reported in Table 2.1. While y and M fit into main memory (RAM) and even
GPU memory, the output r comes close to the limit of current high-end systems’
main memory and is already too big to fit on a GPU’s 6GB of memory. X is
instead simply too big to fit into the memory of any system in the foreseeable
future and will have to be streamed from disk.

Variable Dimension Approx. storage size
y n 80MB
M n× n 800MB
r p×m 30GB
X n× p×m 300TB

Table 2.1: Storage size necessary to hold all data.

9Which may or may not be the optimal storage type. More discussion with biologists and
analysis of the operations is necessary in order to find out whether float is precise enough. If
that was the case, the sizes in Table 2.1 should be halved.

14 CHAPTER 2. INTRODUCTION

2.4 Related work

In the field of bioinformatics, the R project [19] is the most widely used software
package for computations. GenABEL is a frequently used R library for genome-
wide association analysis released in 2007 [2]. It is not comparable to this thesis’
problem because it does not take M into account. Three years later, the authors
of GenABEL released a new library called ProbABEL which, amongst other
improvements, takes the relationships M between individuals into account. In
their introductory paper [3], the authors report a runtime of almost 4 hours for a
problem size of p = 4, n = 1500 and m = 220 833 and estimate the runtime with
m = 2500 000 to be roughly 43 hours10, which amounts to almost two days. While
2.5 mio SNPs can be consideered a big dataset when compared to the median
SNP count in 2009 and 2010, a population size of only 1500 individuals is clearly
much smaller than the average study in these years. The authors state that the
runtime grows more than linearly with n and, in fact, tripling up the sample
size from 500 to 1500 increased their runtime by a factor of 14. Coupling this
fact with the median sample size of about 10 000 individuals, one can imagine
computation times of weeks or even months. We will present further timings
which support this claim in Section 3.3.

2.5 Fundamental HPC libraries and algorithms

In high-performance computing, just like in many other fields of programming, it
is important to rely upon the efforts of others. Reimplementing everything from
scratch, down to the lowest level is usually a bad idea, especially when existing
solutions are known to perform very well. In this section, we present the HPC
libraries relevant to this thesis.

2.5.1 Basic Linear Algebra Subprograms (BLAS)

The BLAS define a set of dense linear algebra building block operations, such as
the matrix-vector and matrix-matrix products. The reference implementation,
written in Fortran77, is far from attaining high performance. Various hardware
vendors implement the BLAS and optimize them for their hardware platform.
For example, Intel’s version is part of the Intel Math Kernel Library (MKL) and
AMD’s implementation is part of the AMD Core Math Library (ACML). Good
free open-source implementations of the BLAS are available too ([10] and [23]).

10We only consider what the authors called the linear model with the -mmscore option as
this solves the exact problem tackled by this diploma thesis.

2.5. FUNDAMENTAL HPC LIBRARIES AND ALGORITHMS 15

The BLAS are organized in three levels, corresponding to three classes of opera-
tions:

• level 1 BLAS consist of vector-vector subprograms,

• level 2 BLAS consist of matrix-vector subprograms, and

• level 3 BLAS consist of matrix-matrix subprograms.

Whenever designing an algorithm, it is best to aim at using as many level 3 BLAS
as possible, as these are usually the only ones coming close to the hardware’s peak
performance.

In the following, we describe the subprograms which are used in this thesis; let α
be a scalar, x and y vectors, A, B, C and X general matrices, and T a triangular
matrix.

• DOT (BLAS-1): computes the dot-product α← xTy;

• GEMV (BLAS-2): adds a matrix-vector product to a vector y ← Ax+ y;

• TRSV (BLAS-2): solves a triangular system Tx = y;

• SYRK (BLAS-3): adds a squared matrix to a matrix C ← ATA+ C;

• GEMM (BLAS-3): adds a matrix-matrix product to a matrix C ← AB +C;

• TRSM (BLAS-3): solves a triangular system with multiple right-hand sides
TX = B.

2.5.2 Linear Algebra Package (LAPACK)

While LAPACK started as a Fortran77 library, nowadays highly optimized vendor
implementations are available in the previously introduced MKL and ACML
libraries. The difference between BLAS and the LAPACK is that the latter
consists of higher level operations and relies upon the former internally. With
more than 200 distinct routines for solving linear least squares, eigenvalue and
singular value problems, matrix factorizations and many more operations, the
scope of the LAPACK is also much broader than the BLAS.

We now introduce the subprograms which are used in this thesis; let x and y be
vectors, and A and L be a s.p.d.11 and a triangular matrix, respectively.

11The acronym s.p.d. stands for symmetric positive definite. A matrix is s.p.d. when it is
symmetric and all its eigenvalues are positive.

16 CHAPTER 2. INTRODUCTION

• POSV: solves a s.p.d.12 system of linear equations Ax = y;

• POTRF: computes the Cholesky factorization of a s.p.d. matrix LLT = A.

2.6 Goals of the thesis

Having introduced the details of the problem at hand along with typical and
desired use cases, we can fix the goals of this thesis13.

(a) Accelerate the computation of GWAS by offloading the most expensive part
of the computation onto the GPU, while at the same time computing all the
other parts on the CPU.

(b) The GPU should be computing non-stop, it should never be waiting for data
transfers to complete.

(c) Scale the algorithm to use multiple GPUs automatically.

(d) The algorithm should be efficient both on current and future hardware with-
out the need to change a single line of code.

(e) The runtime should be at most linear in m: doubling the SNP count should
at most double the computation time.

(f) Support for an arbitrarily large SNP count m.

(g) The sample size n should be limited only by hardware, with n = 10 000 being
the minimum on current hardware.

12A system of linear equations Ax = b is s.p.d. when its system matrix A is s.p.d.
13Note that the order of the goals has no particular meaning.

Chapter 3

State of the art

In this chapter we describe the fastest algorithm [8] currently available for com-
puting the solution ri of a GWAS: HP-GWAS1. A good understanding of this
algorithm is necessary since this thesis builds upon and extends HP-GWAS.

3.1 The HP-GWAS algorithm

The HP-GWAS algorithm achieves much higher performance than the algorithm
used in ProbABEL by making efficient use of domain specific knowledge. The
problem has two properties which offer optimizations opportunities. The first
one is the symmetry and the positive definiteness of the matrix M , which can
be exploited by a Cholesky factorization LLT = M . Since M does not depend
on i, we can compute its Cholesky decomposition once in a preprocessing step
and keep the solution in memory. Inserting this decomposition into Eq. (2.1), we
obtain

ri = (XT
i L

−TL−1Xi)
−1XT

i L
−TL−1y for i = 1..m, (3.1)

which can be rearranged as

ri = ((L−1Xi)︸ ︷︷ ︸
X̃i

T
L−1Xi︸ ︷︷ ︸

X̃i

)−1(L−1Xi)︸ ︷︷ ︸
X̃i

T
L−1y︸ ︷︷ ︸

ỹ

for i = 1..m, (3.2)

1HP-GWAS is the name of the algorithm in the referenced paper. The same algorithm
has been renamed to CLAK-CHOL by the author in later publications, these names are used
interchangeably.

17

18 CHAPTER 3. STATE OF THE ART

that is

ri = (X̃T
i X̃i︸ ︷︷ ︸
Si

)−1 X̃T
i ỹ︸︷︷︸
r̃i

for i = 1..m. (3.3)

Listing 3.1: Solution of a sequence of GLS

1 L ← potrf(M) (LLT =M)
2 y ← trsv(L, y) (ỹ = L−1y)
3 for i in 1..m:

4 Xi ← trsm(L, Xi) (X̃i = L−1Xi)

5 Si ← syrk(Xi) (Si = X̃T
i X̃i)

6 ri ← gemv(Xi, y) (r̃i = X̃T
i ỹ)

7 ri ← posv(Si, ri) (ri = S−1
i r̃i)

This first optimization is expressed algorithmically in Listing 3.1. Although this
algorithm already exploits one important property of Eq. (2.1), it is still far
from optimal. The second problem-specific piece of knowledge we can exploit is
the structure of X = (XL|XR). We have in fact already noted that XL stays
the same for any i: Xi = (XL|XRi

). This partitioning can be inserted into the
lines 4-6 in Listing 3.1. Line 4 becomes (X̃L|X̃Ri

) = L−1(XL|XRi
), line 5 becomes(STL •

SBLi
SBRi

)
=
(X̃T

L X̃L •
X̃T

Ri
X̃L X̃T

Ri
X̃Ri

)
and line 6 becomes

(r̃T
r̃Bi

)
=
(X̃T

L

X̃T
Ri

)
ỹ. Several of

these parts do not depend on i and can thus be extracted and computed only once
during the preprocessing step. As XRi

is a single column-vector, this reduces the
operations in lines 4-6 to vector operations. The resulting algorithm is shown in
Listing 3.2.

Listing 3.2: Solution of the GWAS-specific sequence of GLS

1 L ← potrf M (LLT =M)

2 Xl ← trsm L, Xl (X̃L = L−1XL)
3 y ← trsv L, y (ỹ = L−1y)

4 rt ← gemv Xl, y (r̃T = X̃T
L ỹ)

5 Stl ← syrk Xl (STL = X̃T
L X̃L)

6 for i in 1..m:

7 Xri ← trsv L, Xri (X̃Ri = L−1XRi)

8 Sbl ← dot Xri, Xl (SBLi = X̃T
Ri
X̃L)

9 Sbr ← syrk Xri (XBRi
= X̃T

Ri
X̃Ri

)

10 rb ← dot Xri, y (r̃Bi = X̃T
Ri
ỹ)

11 r ← posv S, r (ri = S−1
i r̃i)

Further improvements are still possible. For instance, line 7 performs a trsv, a
BLAS-2 operation known to have much lower efficiency than the BLAS-3 trsm
operation. By taking multiple vectors XRi

and packing them into a matrix XRb

3.2. HANDLING HUGE DATASETS 19

as depicted in Fig. 3.1, we can replace multiple trsvs by a single more efficient
trsm. This concept leads us to a final first version of the algorithm shown in
Listing 3.3.

... ⇒

Figure 3.1: Packing vectors into a matrix in order to replace multiple trsvs by
a single more efficient trsm.

Listing 3.3: Optimized solution of the GWAS-specific sequence of GLS

1 L ← potrf M (LLT =M)

2 Xl ← trsm L, Xl (X̃L = L−1XL)
3 y ← trsv L, y (ỹ = L−1y)

4 rt ← gemv Xl, y (r̃T = X̃T
L ỹ)

5 Stl ← syrk Xl (STL = X̃T
L X̃L)

6 for b in 1..blockcount:

7 Xrb ← trsm L, Xrb (X̃b = L−1Xb)
8 for Xri in Xr[b]:

9 Sbl ← gemm Xri, Xl (SBLi
= X̃T

Ri
X̃L)

10 Sbr ← syrk Xri (XBRi = X̃T
Ri
X̃Ri)

11 rb ← gemv Xri, y (r̃Bi
= X̃T

Ri
ỹ)

12 r ← posv S, r (ri = S−1
i r̃i)

3.2 Handling huge datasets

The problem with the algorithm presented so far is that it is in-core, which means
that it cannot deal with datasets bigger than the available memory. Algorithms
which can handle data too large for memory are called out-of-core. One way to
turn our algorithm in Listing 3.3 into an out-of-core algorith is to make use of
a technique called double-buffering: while the CPU is busy computing the block
b of XR in a primary buffer, we can already load the next block b + 1 into a
secondary buffer. When the CPU is done computing the block b, and if the disk
is fast enough, the next block will already be present in the secondary buffer.
The CPU can then immediately start computing the block b+ 1 without having
to wait for any data to arrive. The final algorithm is shown in Listing 3.4.

Listing 3.4: An out-of-core version of the algorithm from Listing 3.3

1 L ← potrf M (LLT =M)

20 CHAPTER 3. STATE OF THE ART

2 Xl ← trsm L, Xl (X̃L = L−1XL)
3 y ← trsv L, y (ỹ = L−1y)

4 rt ← gemv Xl, y (r̃T = X̃T
L ỹ)

5 Stl ← syrk Xl (STL = X̃T
L X̃L)

6 aio_read Xr[1]
7 for b in 1..blockcount:
8 aio_read Xr[b+1]
9 aio_wait Xr[b]

10 Xrb ← trsm L, Xrb (X̃b = L−1Xb)
11 for Xri in Xr[b]:

12 Sbl ← gemm Xri, Xl (SBLi
= X̃T

Ri
X̃L)

13 Sbr ← syrk Xri (XBRi
= X̃T

Ri
X̃Ri

)

14 rb ← gemv Xri, y (r̃Bi = X̃T
Ri
ỹ)

15 r ← posv S, r (ri = S−1
i r̃i)

16 aio_wait r[b-1]
17 aio_write r[b]
18 aio_wait r[blockcount]

3.3 Performance

We have run the algorithm described in Listing 3.4 for a GWAS with p = 4, pop-
ulation size of n = 10 000, and varying amount of SNPs m; we then compared the
runtime to other currently available algorithms for computing GWAS. GWFGLS
is the algorithm implemented in ProbABEL, which is one of the most widely used
ones in practice. FLMM is a recently published algorithm [13] which focuses on
a large population size rather than a large SNP count, and CLAK-Chol is the
algorithm presented in Listing 3.4.

Fig. 3.2 shows the runtime for the various algorithms. Both axes have a logarith-
mic scale and the SNP count is given in millions. While FLMM already does a
good job at reducing the computational time when compared to both GWFGLS
and EMMAX, the CLAK-Chol algorithm does an even better job. Instead of
taking months, the computation of a large GWAS can be executed in only sev-
eral hours. The speedup of CLAK-Chol over FLMM, GWFGLS and EMMAX is
6.3, 56.8 and 112 respectively.

3.3. PERFORMANCE 21

EMMAXEMMAX GWFGLSGWFGLS FLMMFLMM CLAK-CholCLAK-Chol Hybrid CLAK-Chol
m t m t m t m t m
1000000 95905 1000000 48383 1000000 5448 1000000 892 1000000

10000000 951121 10000000 481519 10000000 53058 10000000 8428 2000000
36000000 3421745 36000000 1732802 36000000 190598 36000000 30488 3000000

4000000

Hours

Minutes

Days

Months

Years

1s

10s

100s

1.000s

10.000s

100.000s

1.000.000s

10.000.000s

1M 10M 100M
m (SNP count)

EMMAX GWFGLS FLMM CLAK-Chol

1s

10s

100s

1.000s

10.000s

100.000s

1.000.000s

10.000.000s

1M 10M 100M
m (SNP count)

EMMAX GWFGLS FLMM
CLAK-Chol Hybrid CLAK-Chol Extrapolated

Seconds

Figure 3.2: Comparison of the runtime of various algorithms with varying SNP
counts. Notice the logarithmic scales.

22 CHAPTER 3. STATE OF THE ART

Chapter 4

Graphics Processing Units (GPUs)

In this chapter we give an introduction to GPUs and describe why they are
relevant to high-performance computing. A reader already familiar with how
GPUs work and for what they can be used should jump directly to the next
chapter (pg. 29).

4.1 History of GPUs

In the 80s, the first personal computers appeared, namely the IBM PC and the
Commodore Amiga. In these computers, the Graphics or Video Card consisted
of not much more than a Random Access Memory (RAM) and a RAM Digital-to-
Analog Converter (RAMDAC). The RAM memory held a representation of the
pixels which were shown on the screen. At that time, the CPU used to perform
all the computations which are necessary for drawing and moving images on the
screen, and then write the results into the graphics card’s memory. From here,
the memory was converted to a signal sent to the screen, resulting in an image
being shown.

With the Professional Graphics Adapter (PGA), IBM was the first company to
introduce a graphics card which incorporated its own processing unit, freeing the
CPU from the graphic-related workload. As the name suggests, such a graphics
card was not aimed at the personal computer market: the cost was around $5500.
Due to the high price and the incompatibility with many programs and non-IBM
systems, the PGA did not spread widely. Still, its separate processing unit set
a landmark in the landscape of GPUs. At the end of the 80s and beginning
of the 90s, the use of expensive graphics workstations for 3D graphics was very
widespread in the professional CAD market. These workstations were mainly

23

24 CHAPTER 4. GRAPHICS PROCESSING UNITS (GPUS)

built by SGI, the same company that also introduced the OpenGL Application
Programming Interface (API) used for accessing both 2D and 3D functionality
of the workstation’s processing unit.

It is not before the mid-nineties that the 3D graphics cards broke into the com-
modity PCs thanks to the Voodoo card by 3dfx Interactive, a company founded
by former SGI employees. This card marked the end of expensive graphics work-
stations and the beginning of a new era, that of consumer-level 3D graphics cards.
Despite its large success, the Voodoo suffered from one major drawback: it did
not support the OpenGL API. Only a few years later, in the end of the nineties,
both Nvidia and ATI introduced their consumer-level GPUs, the RIVA TNT
and the 3D Rage respectively. These graphics cards were all addressable with
the OpenGL API and, coupled with tremendously successful 3D games such as
Quake, they quickly eclipsed the Voodoo. 3dfx was later acquired by Nvidia.

In October 1999, Nvidia released the GeForce 256, which they marketed as “the
world’s first GPU, or graphics processing unit”. They thereby coined the term
GPU. It was indeed the first graphics accelerator which could compute both
vertex transformation and lighting (T&L) in a single chip. This accelerator pio-
neered the generation of so-called fixed-function pipeline GPUs, of which the later
released GeForce 2 and ATI’s Radeon were part too. The fixed-function pipeline,
shown in Fig. 4.1, is the sequence of operations the 3D polygons go through in
order to be rendered as pixels on the screen. While this approach of a hardwired
pipeline of algorithms leads to highly performant GPUs, it is not flexible enough
to be used for any kind of computation unrelated to graphics.

Since GPUs’ main application, games, requires the rendering of hundreds of thou-
sands of polygons in only a fraction of a second (typically 1

60
s) and the complexity

of the scene grows with every new generation of games, GPUs need to deliver high
computational performance in order to keep up with the game industry’s demand.
Already in the year 1999, the increase in performance of GPUs grew at a rate
much faster than Moore’s law.

It is not before 2001, marked by the release of Nvidia’s GeForce 3, that the high-
performance computation community became interested in GPUs. The GeForce
3 was the first chip to allow the programmer to run small custom programs in the
vertex transform and pixel shading stages of the pipeline. These programs, called
shader programs, would be run many times on different input data and at the same
time in separate parts of the chip. For the first time, it was possible to make these
powerful chips compute something completely unrelated to graphics. Nvidia’s
GeForce 8 GPUs in 2006 introduced the concept of unified shaders, meaning that
a single type of processing unit was used to run any type of shader program, be
it a vertex, fragment or the freshly introduced geometry shader. This profoundly
changed the GPU architecture from very specialized processors into a collection

4.1. HISTORY OF GPUS 25

Transform & lighting

Primitive assembly

Clipping

Texturing

Fog

Alpha, stencil, depth testing

Framebuffer blending

Vertices

Geometries

Fragments

Framebuffer

Figure 4.1: A typical representation of the graphics pipeline.

of more general-purpose processors called Streaming Multiprocessors1 (SMs). At
this point, it became clear even to the sceptics that GPUs can be utilized not
only for games, but also for high-performance scientific computations, provided
that the same operation has to be executed many times. In the following years,
GPU manufacturers were able to lift more and more of the constraints of the
shader programs and thus allow increasingly more complex programs to be run
in parallel on the GPU.

Nowadays, there are mainly two programming APIs opposing each other in the
field of high performance GPU computations: Nvidia’s CUDA (Compute Unified
Device Architecture) and OpenCL2. CUDA was made public for the first time
early in 2007 and only works with Nvidia GPUs. The first OpenCL specification
was published almost two years later as an effort of multiple vendors (Nvidia,
AMD/ATI, Intel, ...) and users to come up with a consistent, cross-platform

1Note that this unified architecture allowed for the introduction of many new shader types
and stages (e.g. the geometry and tesselation shaders) to the rendering pipeline.

2There are, in fact, a few more APIs such as the AMD Stream SDK but the current trend
is to drop support for these libraries and invest into OpenCL.

26 CHAPTER 4. GRAPHICS PROCESSING UNITS (GPUS)

API for high-performance parallel computations. The often quoted advantage of
OpenCL is that one can write one single code and run it on any device, be it a
GPU from Nvidia, an AMD/ATI GPU or even a CPU. While this is true, it is
not practical for high performance because the code which performs best on one
specific hardware architecture is bound to attain subobtimal preformance [7] on
different architectures.

4.2 The architecture of a modern GPU

Understanding the architecture of a GPU is key for achieving high performance.
This section describes Nvidia’s Fermi GPU architecture [16] which is depicted in
Fig. 4.2 and has been used throughough this thesis. While current CPUs have
between two and eight very generic cores, a GPU is made of hundreds (512 for
most Fermi cards) of specialized cores, represented by the small green squares
in the figure. A Streaming Multiprocessor (SM) is a group of 32 of these cores
along with four Special Function Units (SFUs) for computing transcendental
functions, sixteen load/store units for accessing memory, 64KB of shared mem-
ory, two schedulers and a few more components. While these 16 SMs can run
independently of eachother, the cores in one SM can not. Because a SM has two
dispatch units, it can run two different programs in parallel on 16 cores each.
These 16 cores execute instructions in lockstep in a Single-Instruction Multiple-
Data (SIMD) fashion; they are said to run one wrap. Whenever a wrap has to
wait for a data load or store, rather than to idle, the 16 cores will execute another
wrap. Given enough wraps, this allows the Fermi GPU to hide expensive memory
load instructions. A novelty of the Fermi architecture is the unified L2 cache,
which enables much faster memory transfers for some access patterns. Nvidia has
published a very detailed desctiption [18] of these memory access patterns and
many more details one has to be aware of in order to achieve high performance.

4.3 Libraries for GPU computing

While it is relatively simple to write fast computational kernels3 for a GPU, it is
extremely tedious and time consuming to make it as fast as it can get.

Since the very beginning of CUDA, Nvidia has provided an implementation of
the BLAS running on its GPUs called cuBLAS[15]. This implementation was
notorious for being far from optimal –although implemented by Nvidia– until

3Although code which runs on the GPU was initially called a shader program, if the code is
unrelated to the graphics pipeline it is called a kernel.

4.3. LIBRARIES FOR GPU COMPUTING 27

Figure 4.2: A diagram of Nvidia’s Fermi GPU architecture.

V. Volkov thoroughly optimized the gemm and trsm[21] operations for Nvidia’s
G80 and Fermi architectures. Not only did he completely outperform Nvidia’s
own implementation by dismissing several of the guidelines given in the CUDA
C best practice guide, but he also gives reasons for why his implementation is
as fast as it can get [21], even though the gemm operation attains only 60%
of the theoretical peak performance on Fermi architecture GPUs4. By now, his
optimizations to those as well as other BLAS and LAPACK operations (including
potrf) have been incorporated into cuBLAS, which is now regarded as a good
high performance library.

Seeing that our algorithm for computing GWAS is expressed in terms of BLAS
and LAPACK operations and cuBLAS achieves optimal performance, it would be
a waste of time and effort to implement our own kernels and they would probably
also be slower. Not only does using cuBLAS make our code attain optimal
performance for the Fermi platform, but it also promises optimal performance
for past and future Nvidia platform. For these reasons, we decided for using
cuBLAS, as opposed to implementing our own kernels, thus already achieving
goal (d).

4gemm performance on Nvidia’s newest Kepler architecture is reported to attain up to 80%
of the theoretical peak performance.

28 CHAPTER 4. GRAPHICS PROCESSING UNITS (GPUS)

Chapter 5

Leveraging GPUs for GWAS

In this chapter, we describe how we use GPUs to accelerate genome-wide associ-
ation studies, and which hurdles we had to overcome in order to achieve a highly
efficient implementation.

5.1 Determining the current bottleneck

We start the discussion by inspecting the CPU implementation described in Chap-
ter 3; we aim at identifying which part of the algorithm is the slowest; that will
be the section we want to compute on the GPU.

Figure 5.1: Breakdown of the runtime of Listing 3.4.

Because of the complexity, the operation count, and personal experience with
BLAS, one could guess that the trsm on line 10 in Listing 3.4 takes up most
of the computation time. But the golden rule in code optimization is to never
optimize without measuring first, even if one has a very strong guess as to which
part of the code is the bottleneck. We thus measure the runtime of all operations
of the current implementation of the HP-GWAS algorithm in order to determine
the bottleneck. The breakdown of the time spent in every operation is shown in
Fig. 5.1. As one can see, the initial guess was correct: the trsm is responsibe
for most of the time, in fact, more time than all the other operations combined.
As discussed in Section 4.3, a GPU high-performance implementation of this

29

30 CHAPTER 5. LEVERAGING GPUS FOR GWAS

operation is available through the cuBLAS library. We can offload this operation
to the GPU in order to fully exploit it and thus accelerate the whole algorithm.

Listing 5.1: Moving the computation of the trsm to the GPU

1 L ← potrf M (LLT =M)
2 cublas_send L → L_gpu

3 Xl ← trsm L, Xl (X̃L = L−1XL)
4 y ← trsv L, y (ỹ = L−1y)

5 rt ← gemv Xl, y (r̃T = X̃T
L ỹ)

6 Stl ← syrk Xl (STL = X̃T
L X̃L)

7 aio_read Xr[1]
8 for b in 1..blockcount:
9 aio_read Xr[b+1]

10 aio_wait Xr[b]
11 cu_send Xr[b] → Xrb_gpu

12 Xrb_gpu ← cu_trsm L_gpu, Xrb_gpu (X̃b = L−1Xb)
13 cu_recv Xr[b] ← Xrb_gpu
14 for Xri in Xr[b]:

15 Sbl ← gemm Xri, Xl (SBLi
= X̃T

Ri
X̃L)

16 Sbr ← syrk Xri (XBRi
= X̃T

Ri
X̃Ri

)

17 rb ← gemv Xri, y (r̃Bi
= X̃T

Ri
ỹ)

18 r ← posv S, r (ri = S−1
i r̃i)

19 aio_wait r[b-1]
20 aio_write r[b]
21 aio_wait r[blockcount]

5.1.1 Results

In order to compute the trsm on the GPU, the algorithm has to send the nec-
essary data to the GPU first. While the L matrix can be sent once during the
preprocessing step, unfortunately for every block b, the matrices XRb

have to
be sent to the GPU, and the resulting matrices X̃Rb

have to be sent back to
the CPU’s main memory. Listing 5.1 shows the resulting algorithm, interleaved
with the necessary memory movements. In this listing and in all of the following
figures, the colors consistently encode the type and location of the operation:
black (and gray in the figures) and green denote operations executed on the CPU
and GPU, respectively, and orange and yellow denote CPU ↔ GPU and disk
↔ main memory transfers, respectively. A profiled breakdown of the runtime of
the algorithm presented in Fig. 5.2 reflects the pattern seen in the code listing.
The reason there is no yellow in the timings is because the disk↔ main memory
transfers are already completely hidden by the double-buffering technique.

The fact that the trsm is executed on the GPU already partly achieves our
goal (a) to compute the most intensive part on the GPU. The size of L and thus

5.2. HIDING THE MEMORY TRANSFERS AND CPU COMPUTATION 31

the number of samples n in the GWAS is limited by the largest possible buffer
allocation of the GPU. This limit is not the same as the total memory available
on the GPU. For instance, while current Fermi hardware has 6GB of memory,
it is not possible to allocate a buffer larger than 2GB, which corresponds to
n = 16 384 and thus achieves our goal (g).

Figure 5.2: Profiled timings of the algorithm in Listing 5.1.

Figure 5.3: Summed runtime of the operations from Fig. 5.2.

5.2 Hiding the memory transfers and CPU com-
putation

Clearly, this implementation is not optimal yet. As can be seen in Fig. 5.3, a
bit more than a quarter (26.59% to be precise) of the whole algorithm’s time is
spent on CPU computation and data communication between the CPU and the
GPU while only three quarters of the time is spent on GPU computations. This
does yet not fulfill the goals we specified in Section 2.6. In order to get rid of this
problem, we need to do two things: First, run the CPU computations for block
b while the GPU computes the block b+ 1, and second, transfer the data in the
background while the computation takes place.

Luckily for us, modern GPUs1 are able to perform computations at the same
time as the memory transfers take place. This allows us to implement the same
idea we used for hiding disk reads, namely double-buffering, in order to hide
memory transfers to and from the GPU. On the downside, it turns out that
when using two layers of double-buffering (one layer reads/writes from disk and
another layer transfers to/from GPU memory), two buffers on each layer are not
sufficient anymore.

1For nVidia, the G80 GPUs released in 2006 were the first to support this feature.

32 CHAPTER 5. LEVERAGING GPUS FOR GWAS

5.2.1 Two-layered double- and triple-buffering

The idea here is to have two buffers on the GPU and three buffers on the CPU.
The GPU buffers are used in the same way as the CPU buffers in the simple CPU-
only algorithm: while one buffer α is used for computing, the data is transferred
from and to the other buffer β. The three buffers on the CPU are now necessary
because while a first buffer A is used for loading the second-next data block
from disk, the previous result is retreived from the GPU into a second buffer B
where the remaining CPU operations (lines 14-18 in Listing 5.1) take place and
a third buffer C is used to send the next datablock to the GPU. A more detailed
description of the algorithm is given in the following.

It is simpler to explain the algorithm by avoiding the beginning and the ending
iterations; thus we jump right into an iteration of the algorithm, assuming that
the (b− 1)-th, b-th and (b+ 1)-th blocks already reside in the GPU buffers β, α,
and the CPU buffer C respectively. Notice that block b− 1 contains the solution
of the previous trsm of b-1. As shown in Fig. 5.4a, the algorithm proceeds by
dispatching the read of the second-next block b+ 2 from disk into buffer A, and
by the computation of the trsm on the GPU on buffer α, and by receiving the
result from buffer β into the buffer B. The two first operations are dispatched,
i.e. they are executed asynchronously and don’t block the CPU. The transfer of
the results from the GPU back to the CPU is executed synchronously because
these results are needed immediately in the next step.

As soon as this synchronous transfer is done, the transfer of the next block b+ 1
from CPU buffer C to GPU buffer β can be dispatched, and the remaining
operations (lines 14-18 in Listing 5.1) for the previous block b− 1 can be started
in buffer B. By doing this as shown in Fig. 5.4b, we now fully achieve our goal (a)
of running the CPU computations in overlap with the GPU computations.

When the computation on the CPU is done, the results can be written to disk
(Fig. 5.4c). Finally, once the write of b− 1 to disk, the send of b+1 to GPU, the
read of b + 2 from disk, and the trsm of b are all done, buffers can be rotated
(through pointer rotations, not copies) according to Fig. 5.4d, and the loop can
continue with b← b+ 1.

The previous description looks at the algorithm from the perspective of buffer
management. Looking at it from the perspective of tasks while completely ignor-
ing the buffers may also help understanding it better. Fig. 5.5 shows the timeline
of one and a half iterations of the algorithm. The axis in the CPU section is
the main line which depicts the flow of the program code, the other horizontal
lines are dispatched from the main line and thus run asynchronously to it. Note
that because this picture only intends to convey the idea, the sizes of the tasks
are unrelated to their actual runtimes. The bars represent data dependencies;

5.2. HIDING THE MEMORY TRANSFERS AND CPU COMPUTATION 33

b-1

β

bb-1b-2 b+1 b+2 b+3b-3HDD

CPU/RAM

GPU

b-1

b-2 b-1b-3Results r

Data X

b

trsm

α

b+2

A

b-1

B

b+1

C

(a) Get the previous GPU result b − 1 and
the second-next block b+2 of data from disk.

b-1

B

Computationb+1

bb-1b-2 b+1 b+2 b+3b-3HDD

CPU/RAM

GPUs

b-2 b-1b-3Results r

Data X

b+2

A

b-1

β

b

trsm

α

b+1

C

(b) Send the next block b + 1 to the GPU,
execute the remaining computations on b−1
on the CPU.

bb-1b-2 b+1 b+2 b+3b-3HDD

CPU/RAM

GPUs

b-2 b-1b-3Results r

Data X

b+2

A

b+1

β

b

trsm

α

b-1

B

b+1

C

(c) Write the results b− 1 to disk.

bb-1b-2 b+1 b+2 b+3b-3HDD

CPU/RAM

GPUs

b-2 b-1b-3Results r

Data X

b+2

A

b+1

β

b

α

b-1

B

b+1

C

(d) Switch buffers for the next iteration.

Figure 5.4: The double-triple-buffering algorithm as seen from a buffer perspec-
tive.

34 CHAPTER 5. LEVERAGING GPUS FOR GWAS

GPU

CPU

HDD

t

Read b+3

Send b+2

GPU trsm b+1GPU trsm b

Read b+2

Recv b-1

Send b+1

CPU comp b-1

Write b-1

Recv b CPU b

CPU ⇄ GPU transfer

HDD ⇄ CPU transfer

GPU computation

CPU computation

Data dependencies

Asynchronous dispatch

Figure 5.5: A timeline-perspective of the algorithm. Sizes are unrelated to run-
time.

Figure 5.6: The time-profile of the final algorithm presented in this section shows
that the goal of non-stop GPU computation (green) has been achieved.

for example, the task Send b+2 has to wait for the task Read b+2 to be done
before it can start. These explicit data dependencies are only shown when tasks
in different threads depend upon each other. Tasks as well as dispatches in the
same thread always need the previous task to be done before they can start; these
dependencies are implicit and thus not shown in the figure. The full pseudocode
for this algorithm can be read in Listing 5.2.

One can see that if all CPU tasks end before the GPU trsm completes and all
data dependencies are satisfied, the algorithm achieves goal (b) of non-stop com-
putation on the GPU, which corresponds to the all-green profile seen in Fig. 5.6.
While this sounds like a lot, all these conditions are usually satisfied: in our ex-
periments, the GPU trsm still took much more time than all other operations
and data transfers.

Listing 5.2: The parallelized algorithm described by Figs. 5.4 and 5.5

1 L ← potrf M (LLT =M)
2 cublas_send L → L_gpu

3 Xl ← trsm L, Xl (X̃L = L−1XL)
4 y ← trsv L, y (ỹ = L−1y)

5 rt ← gemv Xl, y (r̃T = X̃T
L ỹ)

6 Stl ← syrk Xl (STL = X̃T
L X̃L)

7 for b in -1..blockcount+1:
8 cu_trsm_wait α (if b in 1..blockcount)
9 cu_send_wait C → β (if b in 2..blockcount+1)

5.2. HIDING THE MEMORY TRANSFERS AND CPU COMPUTATION 35

10 α← cu_trsm_async L_gpu, α (X̃b = L−1Xb) (if b in 1..blockcount)
11 aio_read Xr[b+2] → A (if b in -1..blockcount-2)
12 cu_recv B ← β (if b in 2..blockcount+1)
13 aio_wait Xr[b+1] → C (if b in 0..blockcount-1)
14 cu_send_async C → β (if b in 0..blockcount-1)
15 for Xri in B: (if b in 2..blockcount+1)

16 Sbl ← gemm Xri, Xl (SBLi = X̃T
Ri
X̃L)

17 Sbr ← syrk Xri (XBRi
= X̃T

Ri
X̃Ri

)

18 rb ← gemv Xri, y (r̃Bi
= X̃T

Ri
ỹ)

19 r ← posv S, r (ri = S−1
i r̃i)

20 aio_wait r[b-2] (if b in 1..blockcount+1)
21 aio_write r[b-1] (if b in 1..blockcount+1)

5.2.2 Results

The code has been tested on two different clusters nodes.

• Quadro is a cluster at the RWTH Aachen University with two nVidia
Quadro 6000 GPUs and two Intel Xeon X5650 CPUs in each node. The
GPUs, which are powered by Fermi chips, have 6GB of RAM and a theoret-
ical double-precision computational power of 515GFlops each. This leads
to a total GPU computational power of 1.03TFlops. The CPUs, which
have 6 cores each, amount to a total of 128GFlops and are supported by
24GB of RAM. The cost of the combined GPUs is estimated to $10 000
while the combined CPUs cost around $2000.

• Tesla is a cluster at the Universitat Jaume I in Spain with an nVidia Tesla
S2050 system which contains four Fermi chips of the same model as Quadro
but only 3GB of RAM each. This amounts to a total of 2.06TFlops. The
CPU is an Intel Xeon E5440 delivering approximately 90GFlops. We are
grateful to Enrique S. Quintana-Ortì for granting us access to this system.

In all of the timings, the time to initialize the GPU as well as the initial com-
putations (lines 1–6 in Listing 5.2) have not been measured. The GPU usually
takes 5 s to fully initialize and the initial computations take a few seconds too,
depending only on n and p. These have not been taken into account because a
few seconds on startup are irrelevant for a computation which is intended to run
for hours. In this section only the main computation loop is timed.

To get a first impression of the performance, a problem of the size described in
Section 2.4, originally discussed by the developers of ProbABEL, on Tesla takes
2.88 s, compared to 4 hours using ProbABEL’s GWFGLS algorithm. Even by

36 CHAPTER 5. LEVERAGING GPUS FOR GWAS

m CPU only CPU + 1GPU CPU + 2GPU
1000
5000
10000
20000
25000
30000
40000
50000
60000
70000
80000
90000
100000

1,79 0,490 0,294
1,22

11,6 4,174 2,251
24,9 8,201 4,308

10,44 5,326
32,9 12,47 6,3
43,1 16,56 8,3
52,4 20,59 10,3
65,6 24,62 12,4
74,6 28,75 14,3
84,8 32,76 16,3
96,7 36,75 18,3

0

25

50

75

100

0K 22,5K 45K 67,5K 90K

ru
nt

im
e

[s
]

m (SNP count)

CPU only CPU + 1GPU CPU + 2GPU

0

25

50

75

100

0K 22,5K 45K 67,5K 90K

ru
nt

im
e

[s
]

m (SNP count)

CPU only CPU + 1GPU

⟵in-core out-of-core⟶⟵in-core out-of-core⟶

Figure 5.7: The timing of the CPU-only algorithm compared to the hybrid CPU-
GPU algorithm.

adding about 6 s initialization time and accounting for Moore’s Law (doubling the
runtime as ProbABEL’s timings are from 2010), the difference is still dramatic.

As a next performance comparison, Fig. 5.7 shows the runtimes of the original
CLAK-Chol algorithm along with those of the hybrid CPU-GPU version of the
algorithm, running on the Quadro cluster, and using one GPU. One can see that
by leveraging the GPU for computing the trsm while executing everything else
on the CPU at the same time, we achieved a 2.6x speedup over using the CPU
only. As argued in Section 4.3, the implementation of trsm in cuBLAS attains
about 60% of the GPU’s peak performance, i.e. about 309GFlops. The peak
performance of the CPU in this system amounts to 128GFlops; comparing this to
the aforementioned 309GFlops shows us that the biggest speedup we can reach
is 2.4x. Our speedup for the full algorithm is a little bigger than that because the
time of the trsm on the GPU completely shadows the remaining operations on
the CPU. This means that the performance of our implementation is perfectly in
line with the theoretical peak.

In addition, the figure demonstrates that we achieved two more of our goals. First,
we stated as goal (e) that the runtime of the algorithm should be linear in m.
The sum of squared errors when fitting a line to the measured timings is exactly
zero, which means that the measured timings are perfectly linear. Second, the

5.3. USING MORE THAN ONE GPU 37

goal (f) of being able to cope with an arbitrary m dimension is also achieved. The
red vertical line in the figure marks the largest value of m for which two blocks of
XR fit into GPU memory for n = 10 000. Without the presented double-buffering
technique, it would not be possible to compute GWAS with more thanm = 45 000
SNPs2. It is visible that the presented algorithm can compute GWAS with any
given amount of SNPs.

5.3 Using more than one GPU

Even though we have shown that the implementation performs remarkably, we
can still do better. It is becoming more and more usual to have more than one
GPU in a computer. Even mid-budget notebooks recently include two GPUs3.
Especially in the high-performance sector, boards with up to 4 chips such as the
one in the Tesla cluster are already available. Our algorithm extends naturally
to multiple GPUs by simply increasing the size of the XRb

blocks by a factor as
big as the number of available GPUs, and then splitting the trsm among these
GPUs. This allows for easy parallelization to any number of GPUs. Listing 5.3
shows the final version of our parallel multi-GPU algorithm, which works for any
number of GPUs.

5.3.1 Results and scalability

The exact same test as before (in Section 5.2.2) yields the timings shown in
Fig. 5.8; results suggest that the runtime gets halved. In order to better evaluate
the scalability with respect to the number of GPUs, we solved a GWAS with
p = 4, n = 10 000, and m = 100 000 on the Tesla cluster varying the number
of GPUs used. As it can be seen in Fig. 5.9, the scalability of the algorithm
with respect to the number of GPUs is almost ideal: doubling the amount of
GPUs reduces the runtime by a factor of 0.54. Since a runtime reduction of
0.5 corresponds to perfect scalability (depicted by the green curve in the figure:
doubling the number of GPUs cuts the runtime into half), it is evident that the
attained scalability does satisfy our goal (c) of scaling to multiple GPUs.

Finally, in order to demonstrate the real-world benefits of this algorithm, we have
run the algorithm on the problem presented in section 3.3 using the 4 GPUs of the
Tesla cluster. The results are visible in Fig. 5.10, which uses a logarithmic scale

2Double the amount would be possible without doublebuffering because the whole memory
could be invested in the single buffer.

3Although the reason here is to have a powerful one and an economic one, the powerful one
only being turned on when needed.

38 CHAPTER 5. LEVERAGING GPUS FOR GWAS

on both axes. Unfortunately, we could not run tests larger than m = 4000 000
because the available disk-space on the GPU cluster is not large enough. The
other methods have been timed on CPU clusters which are connected to a very
large storage facility. Because the runtime is almost perfectly linear in the number
of SNPs, we are able to extrapolate the timings with high confidence, and thus
get a full comparison. As it can be seen in the plot, the practical speedup is
tremendous: by exploiting four GPUs, the computation time for analysing 36
million SNPs reduces from a full work-day to only slightly more than an hour
and a half. When compared to one of the most widely algorithm currently used in
ProbABEL (GWFGLS), the difference is even more dramatic: a reduction from
20 days to an hour and a half only.

Listing 5.3: The algorithm from Listing 5.2 using multiple GPUs. The black
bullet is a placeholder for all GPUs.

1 L ← potrf M (LLT =M)
2 cublas_send L → L_gpu•

3 Xl ← trsm L, Xl (X̃L = L−1XL)
4 y ← trsv L, y (ỹ = L−1y)

5 rt ← gemv Xl, y (r̃T = X̃T
L ỹ)

6 Stl ← syrk Xl (STL = X̃T
L X̃L)

7 gpubs ← blocksize/ngpus
8 for b in -1..blockcount+1:
9 cu_trsm_wait α• (if b in 1..blockcount)

10 cu_send_wait C• → β• (if b in 2..blockcount+1)

11 α• ← cu_trsm_async L_gpu•, α• (X̃b = L−1Xb) (if b in 1..blockcount)
12 aio_read Xr[b+2] → A (if b in -1..blockcount-2)
13 for gpu in 0..ngpus: (if b in 2..blockcount+1)
14 cu_recv B[gpu*gpubs..(gpu+1)*gpubs] ← βgpu
15 aio_wait Xr[b+1] → C (if b in 0..blockcount-1)
16 for gpu in 0..ngpus: (if b in 0..blockcount-1)
17 cu_send_async C[gpu*gpubs..(gpu+1)*gpubs] → βgpu
18 for Xri in B: (if b in 2..blockcount+1)

19 Sbl ← gemm Xri, Xl (SBLi
= X̃T

Ri
X̃L)

20 Sbr ← syrk Xri (XBRi
= X̃T

Ri
X̃Ri

)

21 rb ← gemv Xri, y (r̃Bi = X̃T
Ri
ỹ)

22 r ← posv S, r (ri = S−1
i r̃i)

23 aio_wait r[b-2] (if b in 1..blockcount+1)
24 aio_write r[b-1] (if b in 1..blockcount+1)

5.3. USING MORE THAN ONE GPU 39

m CPU only CPU + 1GPU CPU + 2GPU
1000
5000
10000
20000
25000
30000
40000
50000
60000
70000
80000
90000
100000

1,79 0,490 0,294
1,22

11,6 4,174 2,251
24,9 8,201 4,308

10,44 5,326
32,9 12,47 6,3
43,1 16,56 8,3
52,4 20,59 10,3
65,6 24,62 12,4
74,6 28,75 14,3
84,8 32,76 16,3
96,7 36,75 18,3

0

25

50

75

100

0K 22,5K 45K 67,5K 90K

ru
nt

im
e

[s
]

m (SNP count)

CPU only CPU + 1GPU CPU + 2GPU

0

25

50

75

100

0K 22,5K 45K 67,5K 90K

ru
nt

im
e

[s
]

m (SNP count)

CPU only CPU + 1GPU

⟵in-core out-of-core⟶⟵in-core out-of-core⟶

Figure 5.8: The timing of the CPU-only algorithm compared to the hybrid CPU-
2GPUs algorithm.

1 2 3 4
Runtime
Ideal
scalability

41 21,6 16,2 11,7
40,7 20,4 13,6 10,2

0

11

23

34

45 40,7s

Runtime Ideal scalability

0

12,5

25

37,5

50

1 2 3 4

40,7

21,6

16,2
11,7

Ru
nt

im
e

[s
]

Number of GPUs

Runtime Ideal scalability

Figure 5.9: Runtime of the algorithm using a varying number of GPUs.

40 CHAPTER 5. LEVERAGING GPUS FOR GWAS

EMMAXEMMAX GWFGLSGWFGLS FLMMFLMM CLAK-CholCLAK-Chol Hybrid CLAK-Chol
m t m t m t m t m
1000000 95905 1000000 48383 1000000 5448 1000000 892 1000000

10000000 951121 10000000 481519 10000000 53058 10000000 8428 2000000
36000000 3421745 36000000 1732802 36000000 190598 36000000 30488 3000000

4000000

Hours

Minutes

Days

Months

Years

1s

10s

100s

1.000s

10.000s

100.000s

1.000.000s

10.000.000s

1M 10M 100M
m (SNP count)

EMMAX GWFGLS FLMM
CLAK-Chol Hybrid CLAK-Chol Extrapolated

Seconds

Figure 5.10: Comparison of the runtime of various algorithms with varying SNP
counts.

Chapter 6

Realtime Visualization

We think that visualization is an important part of scientific work. Often times,
the right visual representation can lead to key insights into data and results. But
even if the focus of a work does not lie on the analysis of data –as is the case with
this thesis– a good visualization conveys the mental image the author has of a
problem. This helps to create a common basis during discussions and to explain
the key concepts to people unfamiliar with them.

In this thesis, we visualize the problem being computed in the same way as
depicted in Fig. 2.6 on Page 13. We render the problem in its actual dimensions,
while it is being computed (i.e. in realtime), and highlight the parts which are
currently being accessed and computed. Fig. 6.6 on Page 47 shows a photograph
of the final visualization.

In the remainder of this chapter, we discuss the tools we used for creating the
visualization as well as some implementation detail.

6.1 The hardware infrastructure

For our visualization, we used a virtual-reality system called Powerwall. It con-
sists of a 4m wide and 2m high screen built into a wall of the room, two Sony4K
projectors, a pair of glasses with markers, and several ARTTrack infrared cam-
eras to track them. This infrastructure is controlled by ten computers: 8 identical
ones called powerwallclient01-08, one powerwallserver and one trackserver. This
setup is represented in Fig. 6.1.

The screen is divided into four quadrants. In each quadrant, the X11 screen of
two powerwallclients is projected; when wearing the glasses, the left eye can only

41

42 CHAPTER 6. REALTIME VISUALIZATION

Figure 6.1: The hardware infrastructure of the powerwall.

see one of these screens while the right eye sees the other one. This makes it
possible to trick the brain into seeing the scene as real 3D, by displaying the
scene from a slightly different perspective for each eye. But for this to work,
all eight displays need to be perfectly synchronized. NVidia’s Quadro G-Sync
addition cards connect all eight powerwallclients and the powerwallserver with
eachother and provides a synchronized framebuffer swap1 and frame counter.

6.2 The software ecosystem

Three separate applications are necessary for the visualization: the renderer, the
master and the gwascomp. Before describing what each of them is responsible
for, we need to explain the communication model.

6.2.1 The communication model

We use the ØMQ (pron.: zero-m-queue) library for all communications between
the applications. ØMQ is often referred to as “sockets on steroids” and described
by the diagram in Fig. 6.2. The reason for this appellation is that while ØMQ
comes with a simple and minimalistic interface very similar to the familiar BSD

1The graphics cards usually employ a double-buffering technique too: the frontbuffer is
shown on the screen while the next frame is being rendered into a backbuffer. When the scene
rendering is done, the buffers are swapped out, resulting in the new scene being displayed on
the screen.

6.2. THE SOFTWARE ECOSYSTEM 43

Figure 6.2: Quoting the official ØMQ documentation: “a ØMQ socket is what
you get when you take a normal TCP socket, inject it with a mix of radioactive
isotopes stolen from a secret Soviet atomic research project, bombard it with
1950-era cosmic rays, and put it into the hands of a drug-addled comic book
author with a badly-disguised fetish for bulging muscles clad in spandex.”

socket interface, behind the scenes it provides a tremendous amount of function-
ality and flexibility. ØMQ supports many well-known software communication
patterns, including request-reply, push-pull, fan-out and pub-sub. The latter one
is the communication pattern we use in all of our communications: whenever
the publisher publishes a message, all of its subscribers receive this message, as
shown in Fig. 6.3. (As opposed to the push/pull pattern, where only the first free
subscriber receives the message.)

Publisher

PUB

Subscriber

SUB

connect

bind

Subscriber

SUB

connect

Subscriber

SUB

connect

messages

Figure 6.3: The publish-subscribe networking pattern.

44 CHAPTER 6. REALTIME VISUALIZATION

6.2.2 The three applications

Now that ØMQ and pub-sub have been introduced, we can discuss the roles of
the three applications.

The gwascomp application runs the GWAS computation on the powerwallserver.
It publishes the current state of the computation along with the problem dimen-
sions before the initialization, at the beginning of every iteration and at the end
of the computation. That is, before the first line, between lines 8 and 9, and after
the last line in Listing 5.3 (Page 38), respectively.

The drawing of the scene happens in the renderer application which runs on all
eight powerwallclients. Each renderer needs to know the problem dimensions and
the current state of the computation and thus subscribes to gwascomp. But in
order to correctly render the scene from the viewer’s perspective, the renderer
needs to know the viewer’s position and orientation at any given time. This is
why the renderer subscribes to the master, which gets this information from the
ARTTrack API once per frame and publishes the data. Fig. 6.4 gives an overview
of all these interactions.

6.2.3 Changes to the transformation matrices

This section briefly explains the technical details necessary to create the illusion
of “real” 3D as opposed to 3D on a flat surface. Explaining the mathematical
foundations of 3D graphics is outside of the scope of this document and it is thus
assumed that the reader is familiar with the basic concepts. A good introduction,
written by Song Ho Ahn, is available at http://www.songho.ca/opengl.

In order to render 3D graphics onto a 2D screen, the 3D coordinate of every
vertex2 needs to go through several transformations. At first, the point v is
brought from its model coordinate system into the world coordinate system using
the model-matrix M : veye =Mv. This can be thought of as placing a 3D model
into the world. Then, the point is transformed into the eye-space using the
view-matrix : veye = V vworld. The eye-space coordinates of the vertex represent
its position in the world relative to the viewer. This transformation can be
seen as placing a camera into the world and looking through it. Finally, the
point is projected onto the screen and its coordinates are transformed to 2D
coordinates through the projection-matrix : vproj = Pvview. This whole chain of
transformations3 is called the model-view-projection (MVP) transformation and

2A vertex is a point of a mesh in 3D space.
3Again, Song Ho Ahn explains these transformations in a much more detailed way on his

webpage: http://www.songho.ca/opengl/gl_transform.html.

http://www.songho.ca/opengl
http://www.songho.ca/opengl/gl_transform.html

6.2. THE SOFTWARE ECOSYSTEM 45

master

PUB

bind

viewer position and orientation

...

connect

renderer

SUB

SUB

connect

dimensions & computation state

gwascomp

PUB

bind

connect

renderer

SUB

SUB

connect

Figure 6.4: The interaction between the three applications necessary for the
visualization.

often combined into a single step:

vproj =MV Pv. (6.1)

In order to trick the brain into seeing the scene as real 3D, we need a different
projection matrix for the left and right eyes. This idea is made clear by Fig. 6.5
which depicts a 3D scene both behind (left panel) and in front of (right panel) the
projection surface (screen). The viewer’s eyes are represented by the two dots on
the left. For each eye, the 3D scene is projected onto the screen, resulting in the
four points on the projection surface. One can see that the image on the screen
needs to be different for each eye. For this to work, the projection matrices’
projection plane needs to be at some point x between the front and the back

46 CHAPTER 6. REALTIME VISUALIZATION

Viewer’s eyes Projection surface 3D scene Viewer’s eyes Projection surface3D scene

Figure 6.5: The 3D scene needs to be projected differently onto the screen for
each eye. The left panel shows the projection of an object supposed to be behind
the wall while the right panel shows the projection of an object supposed to be
in front of (“come out of”) the wall.

plane of the viewing frustum4. By following the derivation of the perspective
projection matrix [1] with an arbitrary projection plane at x ∈ (−1, 1), we come
up with the following general perspective projection matrix, where r, l, t, b, f ,
and w correspond to the right, left, top, bottom, far and wall planes respectively:

P =

2w
r−l

0 r+l
r−l

0

0 2w
t−b

t+b
t−b

0

0 0 −f+w−2xw
f+w

−2xfw
f+w

0 0 −1 0

 .

By evaluating this projection matrix for each eye with the values for r, l, t, b, f
and w computed relative to the eye position, it is possible to create the illusion
of objects coming out of or moving into the wall.

4A frustum is the shape of a pyramid where the "head" has been cut off.

6.2. THE SOFTWARE ECOSYSTEM 47

Figure 6.6: A photograph of the realtime visualization in our virtual-reality room.

48 CHAPTER 6. REALTIME VISUALIZATION

Chapter 7

Conclusions

Genome-wide association studies have recently become a very popular and useful
tool for linking genetic variants to traits and, more specifically, to major diseases.
While the scope of these studies –especially the number of SNPs m– keeps grow-
ing, it is still far from practical to investigate all the 190 million known human
SNPs due to the high computational cost: the currently most used methods take
months for analyzing 36 million SNPs. While the recently published FLMM al-
gorithm reduces the computational time to days, we are able to reduce it even
further, to hours.

We achieved this speedup by making use of domain-specific knowledge, fast recent
hardware (GPUs), as well as a layered multi-buffering technique. Our algorithm
fulfills all the goals we listed in section 2.6: by using multiple buffers both on
the CPU and on the GPU, we are able to keep the GPU computing without
ever having to wait for data (goal b) or for the CPU (goal a). As Fig. 5.9 on
page 39 clearly shows, the algorithm scales almost perfectly to multiple GPUs
(goal c). Due to the nature of the algorithm, the sample size n is only limited by
hardware memory, the current limit being around 16 000 (goal g). Finally, Fig. 5.8
on page 5.8 displays both a perfectly linear runtime with respect to m (goal e)
and sustained high performance for an arbitrarily large SNP count m (goal f).
Our goal d was to be future-proof and indeed, the future looks bright: Nvidia’s
very recently released GeForce GTX 680 has a theoretical peak performance of
3090.4GFlops along with a dgemm efficiency of 80%1 [17]. Because we chose
to use cuBLAS instead of writing our own kernels, we expect our algorithm to
greatly profit from this new architecture without us needing to change a single
line of code.

While the completition of the human genome project in 2004 has made GWAS
possible, our work makes them more practical.

1And consequently a more efficient trsm, as it is based mainly on gemm.
49

50 CHAPTER 7. CONCLUSIONS

Bibliography

[1] S. H. Ahn. Opengl projection matrix.

[2] Y. S. Aulchenko, S. Ripke, A. Isaacs, and C. M. van Duijn. Genabel: an r
library for genome-wide association analysis. Bioinformatics, 23(10):1294–
1296, 2007.

[3] Y. S. Aulchenko, M. V. Struchalin, and C. M. van Duijn. Probabel package
for genome-wide association analysis of imputed data. BMC Bioinformatics,
11:134, 2010.

[4] N. L. o. M. Bethesda (MD): National Center for Biotechnology Information.
Announcement corrections: Ncbi dbsnp build 137 for human.

[5] B. Carlson. Snps — a shortcut to personalized medicine. Genetic Engineer-
ing & Biotechnology News, 28(12), 2008.

[6] I. H. G. S. Consortium. Finishing the euchromatic sequence of the human
genome. Nature, 431:931–945, 2004 Oct 21 2004.

[7] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra. From
cuda to opencl: Towards a performance-portable solution for multi-platform
gpu programming. Parallel Computing, 38(8):391 – 407, 2012.

[8] D. Fabregat-Traver, Y. S. Aulchenko, and P. Bientinesi. Fast and scalable
algorithms for genome studies. Technical report, Aachen Institute for
Advanced Study in Computational Engineering Science, 2012. Available at
http://www.aices.rwth-aachen.de:8080/aices/preprint/documents/AICES-
2012-05-01.pdf.

[9] D. Fabregat-Traver, Y. S. Aulchenko, and P. Bientinesi. High-throughput
genome-wide association analysis for single and multiple phenotypes
- supplementary notes. 2012. Available at http://www.aices.rwth-
aachen.de:8080/aices/preprint/documents/AICES-2012-07-01.pdf.

[10] K. Goto and R. Van De Geijn. High-performance implementation of the
level-3 blas. ACM Trans. Math. Softw., 35(1):4:1–4:14, July 2008.

51

52 BIBLIOGRAPHY

[11] J. Gudmundsson, P. Sulem, D. F. Gudbjartsson, J. G. Jonasson, G. Mas-
son, H. He, A. Jonasdottir, A. Sigurdsson, S. N. Stacey, H. Johannsdottir,
H. Th Helgadottir, W. Li, R. Nagy, M. D. Ringel, R. T. Kloos, M. C. H.
de Visser, T. S. Plantinga, M. den Heijer, E. Aguillo, A. Panadero, E. Prats,
A. Garcia-Castano, A. De Juan, F. Rivera, G. B. Walters, H. Bjarnason,
L. Tryggvadottir, G. I. Eyjolfsson, U. S. Bjornsdottir, H. Holm, I. Olafsson,
K. Kristjansson, H. Kristvinsson, O. T Magnusson, G. Thorleifsson, J. R.
Gulcher, A. Kong, L. A. Kiemeney, T. Jonsson, H. Hjartarson, J. I. Mayor-
domo, R. T. Netea-Maier, A. de la Chapelle, J. Hrafnkelsson, U. Thorsteins-
dottir, T. Rafnar, and K. Stefansson. 44(3):319–322, 2012.

[12] H. LA, M. J. E. B. Institute), W. A, J. HA, H. PN, K. AK, and M. TA.
A catalog of published genome-wide association studies. Accessed July 2,
2012.

[13] E. S. Lander, J. Listgarten, Y. Liu, C. M. Kadie, R. I. Davidson, and D. Heck-
erman. Fast linear mixed models for genome-wide association studies. Nature
Methods, 8(10):833–835, 2011 Sep 04 2011.

[14] NHGRI. Genome-wide association studies. Internet:
http://www.genome.gov/20019523, 2012. Retrieved July 2, 2012, from
http://www.genome.gov.

[15] Nvidia. CUDA CUBLAS Library.

[16] Nvidia. Fermi Compute Architecture Whitepaper.

[17] Nvidia. Kepler Compute Architecture Whitepaper.

[18] Nvidia. CUDA C Best Practices Guide, Jan. 2012.

[19] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-
900051-07-0.

[20] M. Ridley. Genome: The Autobiography of a Species in 23 Chapters. P. S.
Series. HarperCollins, 2006.

[21] V. Volkov and J. W. Demmel. Benchmarking gpus to tune dense linear alge-
bra. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
SC ’08, pages 31:1–31:11, Piscataway, NJ, USA, 2008. IEEE Press.

[22] F. O. Walker. Huntington’s disease. The Lancet, 369(9557):218 – 228, 2007.

[23] R. C. Whaley and J. Dongarra. Automatically Tuned
Linear Algebra Software. Technical Report UT-CS-97-
366, University of Tennessee, December 1997. URL :
http://www.netlib.org/lapack/lawns/lawn131.ps.

List of Figures

2.1 Amount of genome-wide association studies published each year. . 9

2.2 a) The median, first and second quartile and b) the largest SNP-
count used for the studies each year. 10

2.3 a) The median, first and second quartile and b) the largest sample
size used for the replication of the studies each year. 10

2.4 Every published GWAS’s SNP and sample count. 11

2.5 The dimensions of a single instance of Eq. (2.1). 12

2.6 A proportionally correct depiction of the full Eq. (2.1) for n =
10 000 and m = 500 000. 13

3.1 Packing vectors into a matrix in order to replace multiple trsvs
by a single more efficient trsm. 19

3.2 Comparison of the runtime of various algorithms with varying SNP
counts. Notice the logarithmic scales. 21

4.1 A typical representation of the graphics pipeline. 25

4.2 A diagram of Nvidia’s Fermi GPU architecture. 27

5.1 Breakdown of the runtime of Listing 3.4. 29

5.2 Profiled timings of the algorithm in Listing 5.1. 31

5.3 Summed runtime of the operations from Fig. 5.2. 31

5.4 The double-triple-buffering algorithm as seen from a buffer per-
spective. 33

53

54 LIST OF FIGURES

5.5 A timeline-perspective of the algorithm. Sizes are unrelated to
runtime. 34

5.6 The time-profile of the final algorithm presented in this section
shows that the goal of non-stop GPU computation (green) has
been achieved. 34

5.7 The timing of the CPU-only algorithm compared to the hybrid
CPU-GPU algorithm. 36

5.8 The timing of the CPU-only algorithm compared to the hybrid
CPU-2GPUs algorithm. 39

5.9 Runtime of the algorithm using a varying number of GPUs. . . . 39

5.10 Comparison of the runtime of various algorithms with varying SNP
counts. 40

6.1 The hardware infrastructure of the powerwall. 42

6.2 Quoting the official ØMQ documentation: “a ØMQ socket is what
you get when you take a normal TCP socket, inject it with a mix
of radioactive isotopes stolen from a secret Soviet atomic research
project, bombard it with 1950-era cosmic rays, and put it into the
hands of a drug-addled comic book author with a badly-disguised
fetish for bulging muscles clad in spandex.” 43

6.3 The publish-subscribe networking pattern. 43

6.4 The interaction between the three applications necessary for the
visualization. 45

6.5 The 3D scene needs to be projected differently onto the screen for
each eye. The left panel shows the projection of an object supposed
to be behind the wall while the right panel shows the projection
of an object supposed to be in front of (“come out of”) the wall. . 46

6.6 A photograph of the realtime visualization in our virtual-reality
room. 47

List of Listings

3.1 Solution of a sequence of GLS . 18

3.2 Solution of the GWAS-specific sequence of GLS 18

3.3 Optimized solution of the GWAS-specific sequence of GLS 19

3.4 An out-of-core version of the algorithm from Listing 3.3 19

5.1 Moving the computation of the trsm to the GPU 30

5.2 The parallelized algorithm described by Figs. 5.4 and 5.5 34

5.3 The algorithm from Listing 5.2 using multiple GPUs. The black
bullet is a placeholder for all GPUs. 38

55

56 LIST OF LISTINGS

List of Tables

2.1 Storage size necessary to hold all data. 13

57

	Acknowledgements
	Introduction
	Introduction to genetics
	Genome-Wide Association Studies
	The mathematics of GWAS
	The amount of data involved

	Related work
	Fundamental HPC libraries and algorithms
	Basic Linear Algebra Subprograms (BLAS)
	Linear Algebra Package (LAPACK)

	Goals of the thesis

	State of the art
	The HP-GWAS algorithm
	Handling huge datasets
	Performance

	Graphics Processing Units (GPUs)
	History of GPUs
	The architecture of a modern GPU
	Libraries for GPU computing

	Leveraging GPUs for GWAS
	Determining the current bottleneck
	Results

	Hiding the memory transfers and CPU computation
	Two-layered double- and triple-buffering
	Results

	Using more than one GPU
	Results and scalability

	Realtime Visualization
	The hardware infrastructure
	The software ecosystem
	The communication model
	The three applications
	Changes to the transformation matrices

	Conclusions
	Bibliography
	List of figures
	List of listings
	List of tables

