
Biternion Nets: Continuous Head Pose Regression
from Discrete Training Labels
Lucas Beyer, Alexander Hermans, Bastian Leibe

Visual Computing Institute
Computer Vision
Prof. Dr. Bastian Leibe

2. A Good Architecture

The network architecture is based on the popular VGG one. By
itself, perhaps unsurprisingly, it beats all other stateoftheart
methods on currently available headorientation benchmarks for

classification

and regression.

But these datasets are not interesting because none of them
covers the case of full 360° orientation regression.
(CAVIAR's label distribution is almost exclusively concentrated around the four canonical orientations.)

HIIT HOCoffee HOC QMUL
Samples 12 000/12 007 9522/8595 6860/5021 7603/7618 9813/8725

Classes 6 6 4 4 4+1

Tosato et al. 96.5% 81.0% 78.69% 94.25% 91.18%

Lallemand et al. 79.9%

Our CNN 98.70% 86.99% 83.97% 95.58% 94.30%

IDIAP Head Pose CAVIARc CAVIARo

Samples 42 304/23 991 10 660/10 665 10 802/10 889

Pose Range
pan tilt roll pan pan

[101,101] [73,23] [46,65] [0, 360] [0, 360]

Tosato et al. 10.3° ± 10.6° 4.5° ± 5.3° 4.3° ± 3.8° 22.7° ± 18.4° 35.3° ± 24.6°

Ba & Odobez 8.7° ± 9.1° 19.1° ± 15.4° 9.7° ± 7.1°

Our CNN 5.9° ± 7.2° 2.8° ± 2.6° 3.5° ± 3.9° 19.2° ± 24.2° 25.2° ± 26.4°

3. Periodic 360° Regression

There is a discontinuity at the 0°/360° limit: a prediction of 372° is
equally good or bad as a prediction of 12°.

To investigate this problem, we turn to the Town
Centre dataset, which has full 360° annotations
and a moreorless uniform label distribution as
shown to the right. Roughly, we've gone through
the following thinking:

1. So what? Just ignore the problem!
Result: 38.9°±40.7° prediction error. (A shallow network has 64.1°±45.0° error.)

2. Put a modulo on the cost function. This introduces a huge jump
into the function, which confuses gradientbased methods.
Result: divergence.

3. Use the vonMises distribution. It's like a Gaussian on a circle.
Result: 29.4°±31.3° prediction error.

5. From Discrete to Continuous

But there's still a problem: the network is forced to a linear output,
while an orientation really is a circular value.

We can represent an angle through its sine and cosine, i.e. as a
point on the 2D unit circle: y = (cosφ, sinφ). We call this the biter
nion representation due to its relation to quaternions commonly
used for rotations in 3D graphics.

This representation can be encoded into the network by using a
twodimensional output followed by a normalizing nonlinearity.
Such an output naturally leads to using the cosine costfunction.

4. So let's make the output layer circular!
Result: 21.6°±25.2° prediction error. (And 20.8°±24.7° using vonMises cost.)

4. Biternion Representation1. The Main Idea

Inferring the orientation of people's heads is an important low
level task for sceneunderstanding and robot navigation. Most
current approaches have either of the following drawbacks:

 They can't deal with the periodicity of angular data. These
methods are usually evaluated only on frontfacing datasets.

 They require very finegrained regression labels. These
are rare, usually only frontfacing, and tedious to create.

Creating a dataset of headorientations with precise, continuous
annotations is a tremendous amount of hard work. Is there a way
to make continuous predictions without requiring such effort?

Because CNNs are a continuous inputoutput mapping and SGD
optimization just "pulls" on the mapping function, we believe it is
capable of learning a sensible, continuous orientation predictor on
roughlylabeled data, e.g. left, right, front, back. To investigate, we
discretize TownCentre's labels and get the following results.

Ground truth Biternions on 8
orientation bins

Biternions on 4
orientation bins

Interpolated
softmax on 4

orientation bins

Interpolated
softmax on 8

orientation bins

To demonstrate that our method can actually be used in reallife
scenarios within a reasonable development timeframe, we pro
ceeded to record videos of 24 labmates turning on the spot in
front of various backgrounds. A single person cropped and anno
tated the dumped images into eight bins in no more than 2h30.
This is what a BiternionNet trained on that dataset predicts for an
unseen person, framebyframe:

6. Practicality

We show how CNNs and a biternion encoding solve
both of these issues. We obtain stateoftheart results
on several known datasets and show that we can learn
a continuous output from discrete annotations.

The blue curve shows the sine of the angle inferred by the net
work. As is clearly visible, the output is very smooth, continuous,
and there is no outlier.

The full paper has been published at GCPR'15. Code is available:

